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1. INTRODUCTION
The purpose of this experiment is:
1. To determine the tensile modulus, i.e., Young’s modulus, of a simple beam.
2. To determine the shear modulus of a simple beam.
3. To compare the measurement capabilities of the electronic and analog displacement
indicators.
These aims were achieved by performing measurements and analysis on a laboratory
structure of the type shown in Figure 1.

The beam is a frequently encountered structural element that is capable of
withstanding external loads through the resistance of axial extension and transverse
bending. Consequently, the stress and strain analysis of beams constitutes a fundamental
understanding of the mechanics involved in engineering components. Often characterized
by their cross-sectional shape, length, and material, beams can be supported in a variety
of ways, namely simple supports such as pins and rollers and fixed connections such as
when attached to a wall. Each characteristic of the beam dictates its applicability to the
design situation: cross sectional shape plays an important role in the beam’s ability to
resist bending and torsion; length gives insight into how much the beam will deflect;
material depicts the beam’s ability to withstand loads before breaking. Intuitively, these
characteristics work together in designing a structurally sound yet efficient system.

In the present study, a cantilever beam arrangement, shown in Figure 2, is used to
measure the deflection of a simple beam due to applied transverse loads and applied
torques. Knowing the relative displacements along the beam, and by assuming that plane

sections remain plane, it is possible to determine the tensile modulus through the use of



the Euler-Bernoulli theory of slender beams. The Euler-Bernoulli equation for the
bending of slender, isotropic, homogeneous beams of constant cross-section under an
applied transverse load g(x) is

d*w(x)

where E is the tensile modulus, I is the second area moment of inertia of the cross
section, x is the distance along the neutral axis of the beam, and w(x) is the deflection of
the neutral axis of the beam. The second area moment of inertia can be determined by

1
I = Ebh3 2)

where b is the width of the beam and h is the height of the beam. The validity is based on
the additional conditions that:
1. The beam is subjected to pure bending only.
2. The beam material is isentropic, homogenous, and linearly elastic.
3. The beam is initially straight with a cross section that is constant along the length
of the beam.
4. The beam has an axis of symmetry in the plane of bending.
For a cantilever beam, the Euler-Bernoulli equation simplifies to

w(x) = w (3)

where P is the applied load and L is the length of the beam from the support to the

location of the applied load. The maximum deflection of the beam follows as

PL?
Whmax = E (4)



Measuring the rotation of the beam due to a torsional load yields the shear
modulus. While the assumption that plane sections remain plane is valid only for beams
of circular cross section, an approximate solution can be found for the case of a
rectangular cross section. For a beam of uniform cross section along its length, the angle

of twist 8 is

TL

0 A ®)

where T is the applied torque, L is the length of the beam from the support to the
location of the applied load, J is the torsional stiffness, and G is the shear modulus of the
material. The torsional stiffness, or polar moment of inertia, for a beam of rectangular

cross section can be computed from

] = %(b2 + h?). (6)

2. APPARATUS AND TECHNIQUES
2.1 The Beam
The simple aluminum alloy beam, shown in Figure 1, is of length 18 inches, has a
rectangular cross section with dimensions 1.509 + 0.0005 by 0.255 + 0.0005 inches,
and has a weight of 0.668 + 0.0005 pounds. Attached on each side of the beam are two

electrical resistance strain gages.

2.2 The Loading Fixture and Weights
The loading fixture and one of the weights is shown in Figure 3. The loading

fixture can be slid onto the beam and tightened at a location along the beam. The weights



are of an aluminum bronze rod stock and are 5 inches in diameter. The set of weights
used along with the loading fixture are 2.128 + 0.0005, 3.212 + 0.0005, and 5.134 +

0.0005 pounds. Each has a hook for hanging from the load fixture.

2.3 The Frame

The loading frame, shown in Figure 1 with the beam, loading fixture, and weight,
is built according to the design by Durelli, et al. (1965). A vertical beam support is placed
2.5 4+ 0.0005 inches from the slotted side of the frame, at a height where the slot holds
the beam, along with a clamp, thus approximating a cantilever support. A series of holes
are spaced in two inch intervals along the top of the frame to allow the displacement

indicators to measure the beam’s deflection.

2.4 Other Items of Equipment

The mechanical dial displacement indicators, manufactured by the Chicago Dial
indicator Company and of the model # 2-C100 1000, measure graduations with an
accuracy of 1/1000 of an inch. The Mitutoyu Model 575-123 electric displacement

indicators read in increments of 1/2000 of an inch.

3. RESULTS AND DISCUSSION
3.1 Tensile Modulus Measurements
Measurements to determine the tensile modulus, or Young’s modulus, were
performed by attaching various masses to the cantilever beam at a distance of 13.25

inches from the support and measuring the displacement of the beam in the direction of



bending along the length of the beam at each of the holes in the top of the frame, as
shown in Figure 3. Results for the displacements are listed in Table 1. The data was
subsequently plotted and a cubic trend line was found, shown in Figures 5-7. Upon
computing the beam’s area moment of inertia to be 0.00209 inches®, the empirical
formula for the beam’s displacement as a function of length along the beam is compared
to that of Equation (3), allowing the tensile modulus of the beam to be found. The tensile
modulus found for each mass is listed in Table 2. Using Equation (4), the determined
tensile modulus is used to compare the maximum deflection of the beam with the

measured results. These data are also included in Table 2.

Table 1 Measurements of displacement along the beam for various masses.

Mass (Ibs.) 3in. 5in. 7 in. 9in. 11 in. 13 in.

2.128 0.0085in. 0.0205in. 0.0350in. 0.0515in. 0.0705in. 0.0880 in.
3.212 0.0140 in. 0.0310in. 0.0450in. 0.0800in. 0.1085in. 0.1385in.
5.134 0.0220 in. 0.0505in. 0.0880in. 0.1300in. 0.1770in. 0.2265 in.

Table 2 Tensile moduli for various masses and corresponding theoretical maximum deflection

Mass (Ibs.) Tensile Modulus, E (Ib/in.?) Wonayx (iN.)
2.128 8.50 x 10° 0.0879
3.212 8.50 x 10° 0.1326
5.134 8.50 x 10° 0.212

The measurements do show an increasing pattern as the distance from the support to the

location of measurement is furthered as well as when the weight of the hanging mass is



increased. The maximum deflection calculations are fairly consistent with the maximum
deflection data, only becoming less accurate as the weight of the mass is increased. This
inaccuracy may be attributed to general fatigue in the beam after several cycles of

bending.

3.2 Shear Modulus Measurements

The shear modulus of the beam was estimated by attaching various masses to the
cantilever beam at a distance of 13.25 inches from the support off-center from the middle
of the beam, i.e., the beam’s theoretical centroid, by a distance of 0.927 inches width-
wise, as shown in Figure 4. Listed in Table 3 are the measured differences in
displacements in the direction of bending taken at a distance of 0.369 inches from the
middle of the beam width-wise at the location of the hanging mass. Figure 8 shows the
plotted data for the relative transverse displacements. Knowing the beam’s torsional
stiffness to be 0.300 inches”, the empirical formula for the beam’s rotation as a function
of length is compared to that of Equation (3), allowing the shear modulus of the beam to

be found. The shear modulus found for each mass is listed in Table 4.

Table 3 Relative transverse displacement differences for various masses

Mass (Ibs.) Displacement Difference (in.)
2.128 0.002
3.212 0.002
5.134 0.0035
10.96 0.0065




Table 4 Shear moduli for various masses

Mass (lbs.) Angle of Rotation (deg) Shear Modulus, G (Ib/in.?)
2.128 0.1553 5.93 x 10°
3.212 0.1553 8.95 x 10°
5.134 0.272 8.18 x 10°
10.96 0.505 9.40 x 10°

Similar to the tensile modulus experiment, the angle of rotation increases as the weight of
the mass increases. Unlike the former experiment, however, the derived moduli vary
more significantly. The lack of precision could be attributed to the small distance across
the width of the beam when taking measurements, the small distance off-center from the
beam’s centroid to the hanging mass, and general fatigue of the beam after many cycles
of bending. Additionally, these results can be only an approximation of the beam’s
reaction to torque as the hanging mass is not a pure torque since it produces a shear force

as well.

3.3 Digital versus Analog Measurements

The digital and analog displacement indicators are compared for the displacement
of the beam in the direction of bending along the length of the beam. Listed in Table 5
are the data for the various masses. Figures 9-11 show the plots for each digital-analog

pair.



Table 5 Measurements of displacement along the beam for various masses comparing digital to

analog displacement indicators

Mass (Lbs.) 3in. 5in. 7 in. 9in. 11 in. 13 in.
2.128 (d) 0.0085in. 0.0205in. 0.0350in. 0.0515in. 0.0705in. 0.0880 in.
(a) 0.009 in. 0.019in. 0.033in. 0.051in. 0.069in. 0.088in.
3.212(d) 0.0140in. 0.0310in. 0.0450in. 0.0800in. 0.1085in. 0.1385 in.
(@ 0.0014in. 0.030in. 0.052in. 0.080in. 0.106in. 0.133in.
5.134 (d) 0.0220in. 0.0505in. 0.0880in. 0.1300in. 0.1770in. 0.2265 in.
(a) 0.024 in. 0.050in. 0.086in. 0.132in. 0.174in. 0.221in.

Observably, the data from the digital and analog displacement indicators are close in
value aside from the difference in instrument precision. As the mass is increased, the
difference between the digital and analog displacement increases, particularly as the

distance from the support becomes further.

4. CONCLUSIONS

A simple beam has been examined to determine the tensile modulus and shear modulus
of the beam. Measurements of the beam’s deflection along the length of the beam were
made to determine the tensile modulus using Euler-Bernoulli beam theory. Similarly,
measurements of the relative transverse displacements at the end of the beam were used
to determine the shear modulus. In addition, the digital and analog displacement
indicators were compared. The following conclusions are formed:

1. The beam has a tensile modulus, or Young’s modulus, of 8.50 X 10° lb/in.?2,

within the uncertainty.

2. The beam has a shear modulus of 8.12 x 10° Ib/in.?, within the uncertainty.
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3. The digital and analog displacement indicators are mutually precise with the
measurements becoming less precise as the weight of the hanging mass is

increased and measurements are taken further down the length of the beam.
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APPENDIX: UNCERTAINTY CALCULATIONS
To obtain uncertainties in results R derived from these measurements, uncertainties were

combined using the root sum square equation,

OR ? OR 2 OR 2

where a, b, c, ... are the measurements on which R depends. The partial derivatives were

estimated numerically.
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Figure 1. Photograph of the frame, beam, hanging mass, and displacement indicator.
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Figure 2. Photograph of the cantilever beam support system.
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Figure 3. Photograph of the tensile modulus experiment setup.
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Figure 4. Photograph of the shear modulus experiment setup.
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Figure 5. Vertical displacement along beam for hanging mass of 2.128 Ibs.
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Figure 6. Vertical displacement along beam for hanging mass of 3.212 Ibs.
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Figure 7. Vertical displacement along beam for hanging mass of 5.134 lbs.
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Figure 8. Transverse difference in vertical displacement for varying hanging masses.
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Figure 9. Digital and analog data for vertical displacement for mass of 2.128 lbs.
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Figure 10

. Digital and analog data for vertical displacement for mass of 3.212 [bs.
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Figure 11

. Digital and analog data for vertical displacement for mass of 5.134 [bs.
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