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1. INTRODUCTION 

The purpose of this experiment is: 

1. To determine the tensile modulus, i.e., Young’s modulus, of a simple beam. 

2. To determine the shear modulus of a simple beam. 

3. To compare the measurement capabilities of the electronic and analog displacement 

indicators. 

These aims were achieved by performing measurements and analysis on a laboratory 

structure of the type shown in Figure 1. 

 The beam is a frequently encountered structural element that is capable of 

withstanding external loads through the resistance of axial extension and transverse 

bending. Consequently, the stress and strain analysis of beams constitutes a fundamental 

understanding of the mechanics involved in engineering components. Often characterized 

by their cross-sectional shape, length, and material, beams can be supported in a variety 

of ways, namely simple supports such as pins and rollers and fixed connections such as 

when attached to a wall. Each characteristic of the beam dictates its applicability to the 

design situation: cross sectional shape plays an important role in the beam’s ability to 

resist bending and torsion; length gives insight into how much the beam will deflect; 

material depicts the beam’s ability to withstand loads before breaking. Intuitively, these 

characteristics work together in designing a structurally sound yet efficient system. 

In the present study, a cantilever beam arrangement, shown in Figure 2, is used to 

measure the deflection of a simple beam due to applied transverse loads and applied 

torques. Knowing the relative displacements along the beam, and by assuming that plane 

sections remain plane, it is possible to determine the tensile modulus through the use of 
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the Euler-Bernoulli theory of slender beams. The Euler-Bernoulli equation for the 

bending of slender, isotropic, homogeneous beams of constant cross-section under an 

applied transverse load      is  

   
      

   
      (1) 

where   is the tensile modulus,   is the second area moment of inertia of the cross 

section,   is the distance along the neutral axis of the beam, and      is the deflection of 

the neutral axis of the beam. The second area moment of inertia can be determined by  

   
 

  
    (2) 

where   is the width of the beam and   is the height of the beam. The validity is based on 

the additional conditions that: 

1. The beam is subjected to pure bending only. 

2. The beam material is isentropic, homogenous, and linearly elastic. 

3. The beam is initially straight with a cross section that is constant along the length 

of the beam. 

4. The beam has an axis of symmetry in the plane of bending. 

For a cantilever beam, the Euler-Bernoulli equation simplifies to 

      
         

   
 (3) 

where   is the applied load and   is the length of the beam from the support to the 

location of the applied load. The maximum deflection of the beam follows as 

      
   

   
  (4) 
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Measuring the rotation of the beam due to a torsional load yields the shear 

modulus. While the assumption that plane sections remain plane is valid only for beams 

of circular cross section, an approximate solution can be found for the case of a 

rectangular cross section. For a beam of uniform cross section along its length, the angle 

of twist   is 

   
  

  
 (5) 

where   is the applied torque,   is the length of the beam from the support to the 

location of the applied load,   is the torsional stiffness, and   is the shear modulus of the 

material. The torsional stiffness, or polar moment of inertia, for a beam of rectangular 

cross section can be computed from 

   
  

 
         (6) 

 

2. APPARATUS AND TECHNIQUES 

2.1 The Beam 

 The simple aluminum alloy beam, shown in Figure 1, is of length    inches, has a 

rectangular cross section with dimensions              by              inches, 

and has a weight of              pounds. Attached on each side of the beam are two 

electrical resistance strain gages. 

 

2.2 The Loading Fixture and Weights 

 The loading fixture and one of the weights is shown in Figure 3. The loading 

fixture can be slid onto the beam and tightened at a location along the beam. The weights 
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are of an aluminum bronze rod stock and are 5 inches in diameter. The set of weights 

used along with the loading fixture are             ,             , and       

       pounds. Each has a hook for hanging from the load fixture. 

 

2.3 The Frame 

 The loading frame, shown in Figure 1 with the beam, loading fixture, and weight, 

is built according to the design by Durelli, et al. (1965). A vertical beam support is placed 

           inches from the slotted side of the frame, at a height where the slot holds 

the beam, along with a clamp, thus approximating a cantilever support. A series of holes 

are spaced in two inch intervals along the top of the frame to allow the displacement 

indicators to measure the beam’s deflection.  

 

2.4 Other Items of Equipment 

 The mechanical dial displacement indicators, manufactured by the Chicago Dial 

indicator Company and of the model # 2-C100 1000, measure graduations with an 

accuracy of 1/1000 of an inch. The Mitutoyu Model 575-123 electric displacement 

indicators read in increments of 1/2000 of an inch. 

 

3. RESULTS AND DISCUSSION 

3.1 Tensile Modulus Measurements 

 Measurements to determine the tensile modulus, or Young’s modulus, were 

performed by attaching various masses to the cantilever beam at a distance of       

inches from the support and measuring the displacement of the beam in the direction of 
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bending along the length of the beam at each of the holes in the top of the frame, as 

shown in Figure 3. Results for the displacements are listed in Table 1. The data was 

subsequently plotted and a cubic trend line was found, shown in Figures 5-7. Upon 

computing the beam’s area moment of inertia to be         inches
4
, the empirical 

formula for the beam’s displacement as a function of length along the beam is compared 

to that of Equation (3), allowing the tensile modulus of the beam to be found. The tensile 

modulus found for each mass is listed in Table 2. Using Equation (4), the determined 

tensile modulus is used to compare the maximum deflection of the beam with the 

measured results. These data are also included in Table 2. 

 

Table 1 Measurements of displacement along the beam for various masses. 

Mass (    )                                       

                                                                        

                                                                        

                                                                        

 

Table 2 Tensile moduli for various masses and corresponding theoretical maximum deflection 

Mass (    ) Tensile Modulus,   (       )      (   ) 

                      

                      

                     

 

The measurements do show an increasing pattern as the distance from the support to the 

location of measurement is furthered as well as when the weight of the hanging mass is 
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increased. The maximum deflection calculations are fairly consistent with the maximum 

deflection data, only becoming less accurate as the weight of the mass is increased. This 

inaccuracy may be attributed to general fatigue in the beam after several cycles of 

bending. 

 

3.2 Shear Modulus Measurements 

 The shear modulus of the beam was estimated by attaching various masses to the 

cantilever beam at a distance of       inches from the support off-center from the middle 

of the beam, i.e., the beam’s theoretical centroid, by a distance of       inches width-

wise, as shown in Figure 4. Listed in Table 3 are the measured differences in 

displacements in the direction of bending taken at a distance of       inches from the 

middle of the beam width-wise at the location of the hanging mass. Figure 8 shows the 

plotted data for the relative transverse displacements. Knowing the beam’s torsional 

stiffness to be       inches
4
, the empirical formula for the beam’s rotation as a function 

of length is compared to that of Equation (3), allowing the shear modulus of the beam to 

be found. The shear modulus found for each mass is listed in Table 4. 

  

Table 3 Relative transverse displacement differences for various masses 

Mass (    ) Displacement Difference (   ) 
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Table 4 Shear moduli for various masses 

 

Similar to the tensile modulus experiment, the angle of rotation increases as the weight of 

the mass increases. Unlike the former experiment, however, the derived moduli vary 

more significantly. The lack of precision could be attributed to the small distance across 

the width of the beam when taking measurements, the small distance off-center from the 

beam’s centroid to the hanging mass, and general fatigue of the beam after many cycles 

of bending. Additionally, these results can be only an approximation of the beam’s 

reaction to torque as the hanging mass is not a pure torque since it produces a shear force 

as well. 

 

3.3 Digital versus Analog Measurements 

 The digital and analog displacement indicators are compared for the displacement 

of the beam in the direction of bending along the length of the beam. Listed in Table 5 

are the data for the various masses. Figures 9-11 show the plots for each digital-analog 

pair. 

  

Mass (    ) Angle of Rotation (   ) Shear Modulus,   (       ) 
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Table 5 Measurements of displacement along the beam for various masses comparing digital to 

analog displacement indicators 

Mass (    )                                       

      (d)                                                                   

           (a)                                                             

      (d)                                                                   

            (a)                                                              

      (d)                                                                   

            (a)                                                             

 

Observably, the data from the digital and analog displacement indicators are close in 

value aside from the difference in instrument precision. As the mass is increased, the 

difference between the digital and analog displacement increases, particularly as the 

distance from the support becomes further. 

 

4. CONCLUSIONS 

A simple beam has been examined to determine the tensile modulus and shear modulus 

of the beam. Measurements of the beam’s deflection along the length of the beam were 

made to determine the tensile modulus using Euler-Bernoulli beam theory. Similarly, 

measurements of the relative transverse displacements at the end of the beam were used 

to determine the shear modulus. In addition, the digital and analog displacement 

indicators were compared. The following conclusions are formed: 

1. The beam has a tensile modulus, or Young’s modulus, of                 , 

within the uncertainty. 

2. The beam has a shear modulus of                 , within the uncertainty. 
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3. The digital and analog displacement indicators are mutually precise with the 

measurements becoming less precise as the weight of the hanging mass is 

increased and measurements are taken further down the length of the beam. 

 

REFERENCES 

Hallauer W. L. Jr. and Devenport W. J., 2006, AOE 3054 Experimental Methods Course 

 

APPENDIX: UNCERTAINTY CALCULATIONS 

To obtain uncertainties in results R derived from these measurements, uncertainties were 

combined using the root sum square equation, 

     √(
  

  
    )

 

 (
  

  
    )

 

 (
  

  
    )

 

   

where  ,  ,  , … are the measurements on which   depends. The partial derivatives were 

estimated numerically. 
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Figure 1. Photograph of the frame, beam, hanging mass, and displacement indicator. 

 

 

 

 

Figure 2. Photograph of the cantilever beam support system. 
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Figure 3. Photograph of the tensile modulus experiment setup. 

 

 

 

 

Figure 4. Photograph of the shear modulus experiment setup. 
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Figure 5. Vertical displacement along beam for hanging mass of          . 

 

 

 

 
 

Figure 6. Vertical displacement along beam for hanging mass of          . 
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Figure 7. Vertical displacement along beam for hanging mass of          . 

 

 

 

 

 
Figure 8. Transverse difference in vertical displacement for varying hanging masses. 
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Figure 9. Digital and analog data for vertical displacement for mass of          . 

 

 

 

 

 
Figure 10. Digital and analog data for vertical displacement for mass of           . 
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Figure 11. Digital and analog data for vertical displacement for mass of 5        . 
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